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Abstract: The Lin-Maldacena geometries are nonsingular gravity duals to degenerate

vacuum states of a family of field theories with SU(2|4) supersymmetry. In this note,

we show that at large N , where the number of vacuum states is large, there is a natural

‘macroscopic’ description of typical states, giving rise to a set of coarse-grained geometries.

For a given coarse-grained state, we can associate an entropy related to the number of

underlying microstates. We find a simple formula for this entropy in terms of the data that

specify the geometry. We see that this entropy function is zero for the original microstate

geometries and maximized for a certain “typical state” geometry, which we argue is the

gravity dual to the zero-temperature limit of the thermal state of the corresponding field

theory. Finally, we note that the coarse-grained geometries are singular if and only if the

entropy function is non-zero.
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1. Introduction

Recently, several fascinating new examples of gauge-theory / gravity duality have

emerged [1] for which the field theory has a discrete highly degenerate basis of vacuum

states yet we have an explicit non-singular geometry corresponding to each element of the

basis.

The field theories include the Plane-Wave Matrix Model (a one-parameter deformation

of the low-energy theory of D0-branes [3]), a maximally supersymmetric 2+1 dimensional

gauge theory on S2 [4], N = 4 SUSY Yang-Mills theory on S3/Zk, and type IIA Little

String Theory on S5 [1, 4, 6]. Each of these theories has SU(2|4) supersymmetry, which

may be used to argue that the numerous classical vacuum states (reviewed in section 2)

remain degenerate in the quantum theory, and in particular, must be present at strong

coupling. In [1] (following [8]), Lin and Maldacena searched for supergravity solutions with

the same SU(2|4) symmetry, and found nonsingular solutions in one-to-one correspondence

with each element of a natural basis of vacuum states for each of the field theories.1 In

the following discussion and sections 2 to 5 of this paper, we focus on the example of the

Plane-Wave Matrix Model (reviewed in section 2), but we discuss the other theories in

detail in section 6.

While the geometries corresponding to basis vacuum states in each case are the same

asymptotically, they differ even in their topology in the infrared. Since the generic vacuum

state in the field theory is a linear superposition of basis elements, such a state cannot be

dual to a single non-singular supergravity solution with fixed topology (assuming there are

observables that can detect topology), but must simply be dual to a quantum superposition

of the topologically different geometries. Similarly, generic mixed states in the field theory,

such as the zero-temperature limit of the thermal state, involve microstates corresponding

to many different topologies so we might expect that a gravitational dual description in

terms of a single geometry is impossible. On the other hand, there are many examples

of geometries believed to be dual to thermal states of field theories, and these thermal

states involve enormous numbers of microstates that can be very different in the infrared.

Mathur and collaborators have advocated (see [10] for a review) that we should interpret

the thermal state geometry as a coarse-grained description of the underlying microstates,

just as the homogeneous configuration that we use to describe the thermal state of a

gas in a box is a coarse-graining of the true microstates of the atoms. Specifically, the

macroscopic description of any almost any state in the underlying ensemble of microstates

1The construction is completely analogous to the construction of gravity duals to half BPS states of N=4

SUSY Yang-Mills theory [8]. As in that case, the smooth supergravity solutions corresponding particular

states can have large curvatures, and thus are only approximations to the true dual geometries which should

minimize the α′-corrected low-energy effective action.
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is extremely close to one particular coarse-grained configuration, the thermal equilibrium

state. We will see that in our case also, there is a natural way to coarse-grain (i.e. give

a macroscopic description of) geometries corresponding to typical microstates, and that

most of the microstates have a coarse-grained description that is very close to a particular

geometry, which we propose is the correct dual to the zero temperature limit of the thermal

state. In this geometry, the complicated topological features that distinguish the individual

microstate geometries are replaced by a singularity.2

The details of the coarse graining procedure are described in section 3 below, but we

give the essential idea here. The supergravity fields in the Lin-Maldacena geometries are

determined in terms of the potential for an axially symmetric electrostatics problem involv-

ing a certain number of parallel coaxial charged conducting disks in a background electric

field. The number, locations and charges of the disks are determined by the data specifying

the field theory vacuum.3 We will find that typical field theory vacua correspond to elec-

trostatics configurations with a large number of closely spaced disks whose radii are very

small compared with the separation between the disks. At large N , such a configuration

has a natural coarse-grained description as a smoothly varying charge distribution on the

axis. Inserting the potential arising from this coarse-grained configuration into the Lin-

Maldacena supergravity solution, one finds a singular geometry. Since all of the nontrivial

topological features are associated with the regions between the disks in the electrostatics

configurations (these regions map to topologically non-trivial throats in the supergravity

solutions), we see that the complicated topologies that characterize individual microstates

are replaced by a singularity in the coarse-grained description.4

A completely analogous coarse-graining has been discussed [5, 14 – 16] for the half-BPS

sector of N = 4 SUSY Yang-Mills theory. There, the microstate geometries are the type IIB

LLM geometries [8], constructed in terms of droplets of a two-dimensional incompressible

fluid, and the coarse-grained description allows for configurations with arbitrary density of

the fluid between zero and the maximal density. One significant difference is that all of

the states we consider are ground states for the field theory, whereas the LLM discussion

relates to a special class of excited states with energy equal to an R-charge.

As emphasized in [5], a given coarse-grained configuration provides an approximation

to a very large number of microstates, just as in the thermodynamic description of ordinary

physical systems. Further, there is one preferred coarse-grained configuration, analogous

to the thermal equilibrium state, which is very close to the coarse-grained description of

almost any randomly chosen microstate. For the type IIB LLM geometries, the geometry

corresponding to this preferred state was determined in [5] and dubbed the “hyperstar”

geometry. In section 3 of this paper, we determine the corresponding geometry for the

Plane-Wave Matrix Model. In our case, the ensemble of microstates we consider is just

2For a general discussion of conditions under which field theory states can be associated with semiclassical

geometries, see [27] in the LLM context and [28] in the D1-D5 context.
3The radii of the disks are determined by the other information via a constraint.
4We should note however, that for the case of closely spaced disks, the supergravity approximation is

not valid for the region between the disks, so the classical topological features that we are discussing should

be understood to be replaced by some stringy analogue.

– 3 –



J
H
E
P
0
9
(
2
0
0
7
)
0
5
9

the set of vacuum states, or alternately the set of states that contribute (each with equal

weight) to the T → 0 thermal state density matrix. Thus, we propose that our preferred

geometry is the T → 0 limit of the geometry dual to the thermal state of the field theory. In

section 5, we also derive geometries corresponding to the preferred states in other restricted

ensembles, analogous to the type IIB superstar [11], and discuss thermal geometries for the

remaining SU(2|4) symmetric theories in section 6.

As for an ordinary thermodynamic system, the thermal states we derive should max-

imize an entropy functional that measures the number of microstates nearby an arbitrary

coarse-grained configuration. In section 4, we derive such an entropy functional, and find

that it may be written simply in terms of the data that specify the geometry. We find that

this functional is indeed maximized by the thermal state geometry of section 4. Further, we

note that for all the coarse-grained configurations, those for which the entropy functional

vanishes are the ones that coincide the original non-singular microstate geometries. On the

other hand, configurations with non-zero entropy are necessarily singular.

In the general proposal by Mathur and collaborators, black hole geometries with hori-

zons are to be understood as coarse-grained descriptions of underlying horizon-free mi-

crostate geometries. In the present setup, the coarse graining leads to geometries with

naked singularities uncloaked by horizons, but this is to be expected since the number

of microstates in our case is not large enough to give a classical finite-area horizon in the

supergravity limit. It may be that a horizon develops as we move from the supergravity ap-

proximation to solutions minimizing the full low-energy effective action, but, as we will see,

realizing this would necessarily involve understanding both α′ and string loop corrections.

2. The SU(2|4) symmetric matrix quantum mechanics and the dual Lin-

Maldacena geometries

In this section, we review the Plane-Wave matrix model, its vacua, and the dual geome-

tries constructed by Lin and Maldacena. The other SU(2|4) symmetric field theories are

discussed in section 6. We will see that each of these theories has a large degeneracy of

vacuum states at the classical level. This degeneracy remains at the quantum level, since

the representation theory of SU(2|4) does not allow for states with arbitrarily small non-

zero energies, and therefore does not allow the zero-energy states in the classical limit of

the theory to receive corrections to their energy [17, 18].

2.1 The plane-wave matrix model

The Plane-Wave Matrix Model [3] is a massive deformation of the supersymmetric ma-

trix quantum mechanics describing decoupled low-energy D0-branes in flat space.5 It is

described by a dimensionless Hamiltonian

H = Tr

(

1

2
P 2

A +
1

2
(Xi/3)

2 +
1

2
(Xa/6)

2 +
i

8
Ψ⊤γ123Ψ

5This is similar to the Polchinski-Strassler deformation of N = 4 SUSY Yang-Mills theory [2], but in

this case, we preserve all 32 supersymmetries.
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+
i

3
gǫijkXiXjXk − g

2
Ψ⊤γA[XA,Ψ] − g2

4
[XA,XB ]2

)

, (2.1)

where A = 1, . . . , 9, i = 1, . . . , 3, and a = 4, . . . , 9. Here, the scalars XA and 16-component

fermions Ψ are hermitian N × N matrices, and PA is the matrix of canonically conjugate

momenta. Apart from N , the size of the matrices, the theory has one dimensionless

parameter g, such that the theory is weakly coupled for small enough g.6

For this theory, the classical vacua, each with zero energy, are described by

Xa = 0 a = 4, . . . , 9 Xi =
1

3g
J i i = 1, 2, 3,

where J i give any reducible representation of the SU(2) algebra. These vacua are in one-

to-one correspondence with partitions of N , since we may have in general nk copies of

the k-dimensional irreducible representation such that
∑

k knk = N . Below, it will be

convenient to represent such a partition by a Young diagram with N boxes, containing nk

columns of length k.

In the D0-brane picture, a block-diagonal configuration with nk copies of the k-

dimensional irreducible representation is associated classically with concentric D2-brane

fuzzy spheres, with nk spheres at radius proportional to k. On the other hand, it was ar-

gued in [4] that at sufficiently strong coupling, such a configuration is better described as a

collection of concentric fivebranes, with multiplicities and radii given in terms of the num-

bers and lengths of columns in the dual Young diagram.7 For general values of parameters,

we can interpret the solution as a fuzzy configuration with both D2-brane and NS5-brane

characteristics. This will be apparent from the dual gravitational solutions, which include

throats carrying D2-brane flux and throats carrying NS5-brane flux in the infrared part of

the geometry.

2.2 Electrostatics

The vacua of the matrix model each preserve SU(2|4) symmetry. In [1], Lin and Maldacena

searched for type IIA supergravity solutions preserving the same SU(2|4) symmetry (more

precisely, with isometries given by the bosonic subgroup SO(6)×SO(3)×U(1) of SU(2|4)).
Using an ansatz with this symmetry (reproduced in appendix A), they were able to reduce

the problem of finding supergravity solutions to the problem of finding axially-symmetric

solutions to the three-dimensional Laplace equation, with boundary conditions involving

parallel charged conducting disks and a specified background potential. Corresponding to

each classical vacuum and choice of parameters, we have a specific electrostatics problem,

whose solution (a potential V (r, z)) feeds into the equations (A.1) to give the dual su-

pergravity solution. Further, the smooth supergravity solutions for which fluxes through

6The model was introduced originally as a matrix model for M-theory on the maximally supersymmetric

eleven-dimensional plane-wave. For this we are required to take a limit N → ∞ with g2N ∼ N4. In the

present work, we will mainly be concerned with the usual ’t Hooft large N limit with λ fixed.
7In [4], the matrix model was discussed in the context of its conjectured description of M-theory on a

plane-wave background. There, the fivebranes were M5-branes, while here we are considering a limit with

fixed λ, dual to a IIA background, so the fivebranes are NS5 branes.
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non-contractible cycles are quantized appropriately are in one-to-one correspondence with

the vacua.

For the other SU(2|4) symmetric theories described in section 6, the construction differs

only by a choice of boundary conditions (background potential or the presence/absence of

infinite-sized conducting plates). The solution to these electrostatics problems has been

discussed in [20].

We now describe the electrostatics problem in detail and then review some general

features of the dual supergravity solutions. Common to all vacua, we have in the electro-

statics problem an infinite conducting plate at z = 0 (on which we may assume that the

potential vanishes), and a background potential

V∞ = V0

(

r2z − 2

3
z3

)

. (2.2)

In addition, corresponding to a matrix model vacuum with Qi copies of the di-dimensional

irreducible representation, we have conducting disks with charge Qi parallel to the infinite

plate and centred at r = 0, z = di.
8 In order that the supergravity solution is non-singular,

the radii Ri of the disks must be chosen so that the charge density at the edge vanishes.

The parameters of the matrix model are related to the parameters in the electrostatics

problem as N =
∑

Qidi and g2 ∝ 1/V0.

2.3 Gravity duals

The coordinates r and z in the electrostatics problem form two of the nine spatial coor-

dinates in the geometry. In addition, for each value of r and z, we have an S2 and an S5

with radii that depend on (r, z). The S5 shrinks to zero size on the r = 0 axis, while the

S2 shrinks to zero size at the locations of the conducting plates, so we have various non-

contractible S3s and S6s corresponding to paths that terminate on different plates or on

different segments of the vertical axis respectively. This is illustrated in figure 1. As shown

in [1], through an S6 corresponding to a path surrounding plates with a total charge of Q,

we have N2 = Q units of flux from the dual of the Ramond-Ramond four-form, suggesting

the presence of N2 D2-branes. Similarly, through an S3 corresponding to a path between

plates separated by a distance d, we have N5 = d units of H-flux, suggesting that this part

of the geometry between the plates is describing the degrees of freedom of N5 NS5-branes.

Since the matrix model is a massive deformation of the maximally supersymmetric

quantum mechanics describing low-energy D0-branes in flat-space, we should expect that

the dual supergravity solutions correspond to infrared modifications of the near-horizon

D0-brane geometry. Indeed, the solutions are asymptotically the same as the near-horizon

D0-brane solution, with the strong-coupling region in the infrared replaced by smooth

topological features that depend on the choice of vacuum.

3. Coarse-graining the Lin-Maldacena geometries

For large N , the plane-wave matrix model has of order exp(
√

6N/π) independent vacua

labelled by reducible dimension N representations of SU(2). In this section, we will argue

8Our conventions here are slightly different from the ones in [1], as we describe in appendix A.
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Figure 1: Mapping between matrix model vacua, electrostatics configurations, and geometries.

For illustrative purposes, we have replaced the S2×S5s associated to each point (r, z) with S0×S0.

In the full geometry, the dotted segment maps to a submanifold Σ6 that is topologically S6 × S2

(simply connected) rather than the S1 × S0 shown here. Similarly, the dashed segment maps to a

submanifold Σ3 that is topologically S5 × S3 rather than the S0 × S1 here.

that as for standard thermodynamic systems (e.g. particles in a box), if we use coarse-

grained, macroscopic variables to describe the states, then despite the large number of

possible microscopic states, the description of a randomly chosen microstate will, with very

high probability, be extremely close to the average or “thermal equilibrium” state. We will

see explicitly what the coarse-grained description of this average state is in our case, and

– 7 –



J
H
E
P
0
9
(
2
0
0
7
)
0
5
9

see that there is a natural way to associate a geometry to this (and more general) coarse-

grained configurations. We will interpret the resulting geometry as the zero-temperature

limit of the thermal state, since this state has a density matrix with equal contributions

from each basis vacuum state. Much of the discussion in this section follows ideas in [5]

for the LLM geometries.

3.1 Macroscopic variables

We begin by understanding the macroscopic variables appropriate in our case. As we will

see, typical gauge theory states for large N will correspond to electrostatics configurations

with large numbers of charged disks at unit separation. The microstate configurations

are specified by giving the (integer) charge at each discrete location on the vertical axis.

Since the extent of the disk configurations on this axis will be much larger than the disk

separations (typically by a factor of
√

N as we will see), it is sensible to characterize

configurations by a macroscopic charge density Q(z). This, we can define by averaging the

microscopic charge over a distance much larger than the disk separations, but much smaller

than the vertical extent of the disk configuration. Thus, in the coarse-grained description

of states, Q(z) should be a smooth function.

We still need to understand how the charge Q(z) should be arranged in the directions

perpendicular to z (recall that for the microstates it spreads out dynamically on the charged

conducting disks), but first it will be helpful to see what Q(z) looks like for typical states.

3.2 Typical states

In the microscopic description, the charges Qn at position z = n label how many times the

irreducible representation of dimension n appears, and are subject to the constraint

∞
∑

n=1

nQn = N . (3.1)

We would now like to ask what a typical randomly chosen representation looks like. To do

this, we first note that the independent vacuum states of the matrix model are in one-to-

one correspondence with the quantum states of a free massless boson on an interval (a.k.a.

a quantum guitar string) with energy E − E0 = ~ωN , where ω is the frequency of the

lowest mode. In this analogy, Qn gives the number of particles of frequency nω. For large

N , where the energy and number of particles are large, we know that a thermodynamic

description is appropriate, and that any macroscopic quantities evaluated for a randomly

chosen microstate are extremely likely to be extremely close to the average values.

For our discussion, we will be interested in the average coarse-grained charge distribu-

tion defined above, so we start by computing the expected value of Qn for each n. This

is equivalent to calculating the expected particle numbers for our gas of free bosons in the

microcanonical ensemble at energy E = N (setting ~ = ω = 1). For large N , this should

agree up to tiny corrections with the result as computed in the canonical ensemble, so

long as we choose the temperature such that the expected value of the energy is N . The

calculation is much simpler in the canonical ensemble, since now we can sum over all states

without a constraint.

– 8 –
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To study the canonical ensemble, we write a partition function [21]

Z =
∑

Qn

e−β
P

nQn

=
∏

n

∑

Qn

e−βnQn

=
∏

n

1

1 − e−βn
. (3.2)

From this, the expectation value of Qn is found (for example by changing the β in front of

Qn to α, differentiating ln(Z) with respect to −αn, and setting α = β) to be

〈Qn〉 =
1

eβn − 1
. (3.3)

The expected value of energy is

〈N〉 = −∂β ln(Z) =
∑

n

n

eβn − 1

≈ π2

6β2
,

where the last line assumes that the sum can be approximated by an integral (valid for

large N). Solving for β in terms of N and plugging in to (3.3), we find

〈Qn〉 =
1

e
πn√
6N − 1

. (3.4)

Thus, the coarse-grained approximation to a typical microstate will have a linear charge

density very close to

〈Q(z)〉 =
1

e
πz√
6N − 1

. (3.5)

Or, defining x = z/
√

N and
√

Nq(x) to be the charge density in terms of x, we have

〈q(x)〉 =
1

e
πx√

6 − 1
. (3.6)

3.3 Supergravity solution for the average state

We would now like to understand the supergravity solution corresponding to the average

coarse-grained configuration we have found. To do this, we first need to understand pre-

cisely how the charge Q(z) should be distributed in the horizontal directions. For the

microstates, the actual distribution of charge is determined dynamically, since the charges

are free to move on conducting disks whose radii are determined by the constraint that the

charge density at the edge vanishes. However, we will now see that the typical configura-

tions for large N with fixed λ have disks whose radii are much smaller than the separation

between the disks. Thus, in the coarse-grained picture for typical states, we can take the

charge distribution to sit on the vertical axis.

To understand how large the disks should be, we note that for the microstates, having

conducting disks with the correct radii is necessary in order to avoid singularities in the

– 9 –
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supergravity solution. If we simply place all the charge on the axis, singularities should

appear (wherever ∂rV = 0). These cannot be at radii much larger than the original radii

of the disks, since at these large radii, the electrostatics potential should be modified only

slightly when we move all the charge to the axis. Thus, the distance scale defined by the

sizes of the disks should be the same as the typical coordinate distance from the axis where

singularities appear in the modified configuration. We will now use this to estimate the

radii of the disks for the typical configurations.

For a charge distribution Q(z) on the vertical axis, the corresponding potential will be

given by [21]

V (r, z) = V0(r
2z − 2

3
z3) +

∫ ∞

0
dz′Q(z′)

{

1
√

r2 + (z − z′)2
− 1

√

r2 + (z + z′)2

}

, (3.7)

where the second term arises from the image charges below the infinite conducting plate.

It is straightforward to check that such a potential for smooth Q(z) always gives rise to a

singular supergravity solution [21]. The singularity appears at the locus of points where

the radial component of the electric field vanishes [1]. To estimate this radius, we note that

for slowly varying Q(z), the radial electric field near the axis is given by

Er(r) = −2rzV0 + 2
Q(z)

r
,

so the singularity is located at9

r =

√

Q(z)

zV0
. (3.8)

From (3.5), we see that for z of order
√

N , the typical value of the charge on each disk

is of order one, while for z of order one, the typical charge is of order
√

N . Recalling that

V0 ∼ 1/g2, we estimate that the typical radii of the disks will be

r ∼
√

λ

N
3
2

z = O(
√

N) ,

r ∼
√

λ

N
1
2

z = O(1) . (3.9)

In either case, for large N and fixed λ the typical radii go to zero. Thus, in the coarse-

grained description of typical states in the ’t Hooft limit, we can take all the charge to

be located on the z-axis. This leads us to the following conclusion: the geometry dual

to the T = 0 thermal state of the plane-wave matrix model at large N is given by the

Lin-Maldacena solution (A.1), with potential (3.7) determined in terms of the charge dis-

tribution (3.5). It may be that for some coordinate choice, the solution takes a simpler,

more explicit form, but we have not investigated this.

9This should be a good approximation so long as r is small compared with Q/Q′.
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r rz z

Figure 2: Coarse-graining for large disks. The shaded region represents a solid conductor that

conducts only in the horizontal directions.

3.4 Coarse-grained solutions for large disks

For large N and fixed λ, we have seen that the typical states have electrostatics configu-

rations for which the disks are small relative to their separations, so that the charge can

simply be taken to lie on the vertical axis in the coarse-grained description. However, it

is also useful to have a coarse-grained description of states in cases where the radii of the

disks is larger than their separations. This is relevant, for example, if we allow λ to scale

as a power of N , or for fixed λ in restricted ensembles for which we restrict the number of

fivebranes (as in section 5).

In such cases, the coarse-grained picture will have the closely spaced disks replaced

by a uniform material that conducts only in the directions perpendicular to the z-axis.

This material will have some smooth profile described by a radius function R(z) and carry

charges such that total charge on the conductor between heights z and z +dz is Q(z). Just

as the radii of the disks in the original setup are determined by the charges, we should

expect that R(z) in the coarse-grained situation will be determined by Q(z). Specifically,

it turns out that the shape R(z) of the conductor must be chosen such that the surface

charge density vanishes. This R(z) gives the coordinate location of the singularity in the

supergravity solution corresponding to a given coarse-grained Q(z). The details of this

coarse graining procedure and the mathematical procedure that determines R(z) in terms

of Q(z) are described in appendix B.
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4. An entropy functional

In thermodynamic systems, we can often associate an entropy with coarse-grained config-

urations that are more general than the state of thermal equilibrium for the whole system.

In this section, we give a functional that associates an entropy to a general coarse-grained

Lin-Maldacena geometry and discuss its properties. A similar entropy functional has been

derived recently for the LLM geometries in [26, 27].

4.1 A familiar example

As a familiar example, consider an ideal monatomic gas in a box. For a given energy E,

we can find the entropy of the whole system, but we could also talk about the entropy of

a state where all the particles are in one half of the box (but are otherwise in a typical

configuration). More generally, we can associate an entropy to an arbitrary configuration

for which we specify the particle density and energy density (the macroscopic variables) as

a function of position, as long as these vary only over macroscopic scales.

For illustrative purposes, we will work out this example, starting with quantities as

calculated in the canonical ensemble. Up to an additive constant, the entropy for N

particles in thermal equilibrium at temperature T in volume V is given by

S = Nk

(

ln(V/N) +
3

2
ln(T )

)

.

On the other hand, the average energy is

E = 3/2NkT .

Defining the particle density ρ and the energy density ρE, we can then write an expression

for an entropy density in terms of ρ and ρE as

s = S/V = −ρ ln(ρ) +
3

2
ρ ln

(

2

3
ρE/k

)

.

Finally, the entropy associated with some general coarse-grained state is

S[ρ, ρE ] =

∫

dV

{

−ρ ln(ρ) +
3

2
ρ ln

(

2

3
ρE/k

)}

,

subject to the constraints that
∫

dV ρ = N ,

and ∫

dV ρE = E .

We can check that the entropy functional is maximized subject to the constraints for

constant ρ and ρE .

Thus, to define the entropy functional, we split the system up into macroscopic parts

(the volume elements), determine the entropy for each of these parts as a function of the

coarse-grained variables of the part, and then write the entropy of the whole system as a

sum of the individual entropies, with the constraint that the coarse-grained variables are

consistent with any specified global quantities (such as energy).
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4.2 Entropy for coarse-grained matrix model vacua

Now we move on to the plane-wave matrix model vacua. In this case, the variable that

we use to describe our coarse-grained configurations is the charge density q(x) (recall that

we defined x = z/
√

N . Let us now consider the interval [x, x + dx) as a subsystem of our

analog thermodynamic system. The charge in this interval, q(x)dx is given as a sum of

independent microscopic variables

q(x)dx = Qn + · · · + Qn+l ,

which are also independent of the variables that determine Q outside the interval. Here

n = x
√

N and l = dx
√

N . We assume that the coarse graining is over macroscopic

distances, in other words that the number l of individual degrees of freedom contributing

to Q(x)dx is large. Thus, we should have 1 ≪ l ≪ n. Now, for the subsystem, we have the

partition function

Z =

n+l
∏

k=n

1

1 − e−βk
.

This gives free energy

F ≈ lT ln(1 − e−nβ) ,

and energy

Ē = 〈nQn + · · · + (n + l)Qn+l〉
≈ nl

enβ − 1
.

The entropy is then

S = (E − F )/T = l

[

nβ

enβ − 1
− ln(1 − e−nβ)

]

.

Note that this is proportional to the size of the interval, so it makes sense to define an

entropy density s(z) = S/l or equivalently s(x) =
√

NS/l. We would like to express this

in terms of the average charge density Q(x) in the interval, given by

Q = 〈Qn + · · · + Qn+l〉/dx

≈
√

NĒ/(nl)

=
√

N
1

enβ − 1
.

Solving for β in terms of Q, and substituting into the formula for s, we find

s(x) =
√

N((q + 1) ln(q + 1) − q ln(q)) ,

where we have defined q = Q/
√

N .

Thus, we can associate to a coarse-grained configuration described by a charge density

q(x) an entropy

S[q(x)] =
√

N

∫

dx[(q + 1) ln(q + 1) − q ln(q)] . (4.1)
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Allowed vacua of the matrix model are subject to the constraint
∫

dxxq(x) = 1 . (4.2)

We can now check that maximizing (4.1) subject to the constraint (4.2) gives the

correct result for the charge density. Introducing a Lagrange multiplier for the constraint

and varying with respect to q, we find

ln(q + 1) − ln(q) + Λx = 0 .

This gives

q(x) =
1

eΛx − 1
,

and enforcing the constraint yields

Λ = π/
√

6 .

Thus, we reproduce (3.6).

For more general coarse-grained configurations, it is clear from (4.1) that the entropy

will be nonzero if there is any interval (x1, x2) for which q(x) is continuous and nonzero.

Thus, the only way to have a vanishing entropy functional with a nonzero net charge is

to have the charge located at discrete points on the axis such that q(x) is a sum of delta

functions, as we have in the microstate configurations.10 In this case, the entropy vanishes

since for large q, we have

(q + 1) ln(q + 1) − q ln(q) ∼ ln(q) (large q)

and ∫

ln(δ(x − a))dx = 0 .

Recalling that the D2- and NS5-brane fluxes are quantized properly in the supergravity

solutions if and only if the charges are quantized and located at integer values of z, we

conclude that the entropy function is zero if and only if q(x) corresponds to a microstate ge-

ometry. Consequently, all coarse-grained configurations with non-zero entropy correspond

to singular supergravity solutions.

Our formula (4.1) gives the entropy as a simple expression in terms of q(x), which in

turn directly determines the geometry. In this sense, it is a geometrical formula for the

entropy. We might also ask whether there is any direct relation to a horizon area (or Wald’s

generalization [24]) in this case. However, as is typical in examples with a large amount of

supersymmetry, the singular coarse-grained geometries that we obtain have no horizons.11

10Technically, such a q(x) can only appear as a coarse-grained configuration in the limit where we take

the coarse-graining scale to zero. Thus, for any non-zero coarse-graining scale, the entropy will be non-zero

for all configurations.
11It was shown in [1] that the metric components in a general LM geometry A.1 will be continuous and

nonzero (except for points on the conducting disks ) for all potential V satisfying the three dimensional

Laplace equation. From this it is straightforward to see that the region outside of the coarse-grained

conducting disks is causally connected.
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On the other hand, both the curvature and the dilaton diverge at the singularities, so the

supergravity solution should receive both α′ and string loop corrections. It is possible that

the fully corrected solutions have horizons.

Following [25], we might hope that an appropriate definition of a stretched horizon

around the singularity12 would have area that reproduces the entropy (perhaps up to

numerical factors). In fact, our setup should provide a very stringent test of any proposed

definition of a stretched horizon, if we demand that it correctly reproduces the functional

dependence of the entropy on q(x). Unfortunately, as we show in appendix C, the necessary

location of a stretched horizon whose area would reproduce our entropy is parametrically

closer to the singularity than either the radius where the curvature becomes large or the

radius where the dilaton becomes large. At this scale, it is probably naive to expect that

a simple area would reproduce the entropy.

5. Other ensembles

The T = 0 thermal solution we have found is analogous to the ‘hyperstar’ geometry of [5],

dual to the coarse-grained typical state of N = 4 SUSY Yang-Mills theory on S3 with a

U(1) ∈ SO(6) R-charge equal to energy. For that theory, there is a related geometry known

as the ‘superstar’ that has been understood as the geometry dual to the equilibrium state

in a more restricted ensemble for which the number of D-branes in the spacetime is fixed.

There are similar restricted ensembles that are natural to consider in our case.

To understand these, we recall that the microstate geometries contain various non-

contractible S3 cycles carrying NS5-brane flux and non-contractible S6 cycles carrying

D2-brane flux. For a given microstate, there will be some 3-cycle in the geometry carrying

a maximal number of units N5 of NS5-brane flux and some 6-cycle carrying a maximal

number of units N2 of D2-brane flux, as shown in figure 3. We loosely refer to N5 and N2

as the number of NS5-branes and D2-branes in the geometry. Just as we understood the

typical states in general, we can also ask about the form of the typical states in ensembles

where either N2 or N5 or both are fixed.

To do this, we note that the total number of units of NS5-brane flux is given by the

largest j for which Qj 6= 0, while the number of units of D2-brane flux is given by the

total charge
∑

j Qj. If we consider a Young diagram with Qj rows of length j, then N2

and N5 are the total number of rows and columns in the Young diagram respectively. The

problem of studying typical Young diagrams with a fixed number of rows (or equivalently

a fixed number of columns) is precisely the one studied in [5] to understand typical states

in the hyperstar ensemble of LLM geometries, while the problem of studying typical Young

diagrams with a fixed number of rows and columns is precisely the one studied in [5] to

determine the typical configurations in the (generalized) superstar ensemble. Thus, we can

directly carry over those results to find the q(x).

12Possible definitions considered in the literature include the locus of points where the curvature becomes

strong, where the dilaton becomes strong, where the local temperature equals the Hagedorn temperature,

or where microstates begin to differ significantly from each other.
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Figure 3: Example electrostatics configuration showing the non-contractible cycles S3 and S6

carrying the largest amount of NS5-brane and D2-brane flux respectively.

5.1 Fixed N5

For fixed N5, we simply restrict the partition function (3.2) to n ≤ N5. The expected value

of Qn is given by the same formula,

〈Qn〉 =
1

eβn − 1
, (5.1)

but now the expected value of N is

〈N〉 =

N5
∑

n=1

n

eβn − 1
≈ N2

5 f(βN5) , f(x) ≡ 1

x2
Li2(1 − e−x) . (5.2)

Thus, we obtain a charge density

Q(z) =
1

e
z

N5
f−1(N/N2

5 ) − 1
, z ≤ N5 .

Note that in the unrestricted ensemble, the typical extent of the charge distribution was

of order
√

N , so we only have a significant difference from the unrestricted ensemble when

N5 is of order
√

N or smaller. One interesting case is that where we fix N5 to some large

but finite value in the large N limit. In this case, we find

β =
N5

N
,

and

Q(z) ≈ N

N5z
.

In this case, our estimate (3.8) for the size of the disks gives r ∼
√

λ/N3
5 , so the disks are

large compared to their separations for λ ≫ N3
5 . In this case, we need to use the methods

of appendix B to determine the appropriate coarse-grained geometry.
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5.2 Fixed N2 or fixed N2 and N5

For fixed N2 (with either fixed or unrestricted N5), it is simplest to work in a grand

canonical ensemble where we introduce a chemical potential for N2 and tune it to get the

correct value. We will therefore consider the partition function

Z(β, µ) =
∑

Qj

e−
P

(βj+µ)Qj . (5.3)

From this, we obtain a charge distribution

〈Q(z)〉 =
1

eβz+µ − 1
, (5.4)

where β and µ are fixed by demanding

N =

〈

∑

j

jQj

〉

=

N5
∑

j=1

j

eβj+µ − 1
, (5.5)

as before, and
〈

∑

j

Qj

〉

=

N5
∑

j=1

1

eβj+µ − 1
. (5.6)

In general, β and µ are complicated functions of N2 and N5, but as pointed out in [5],

there is a simple special case where we take β → 0 with fixed µ. This gives the solution in

the case where we restrict

N2N5 = 2N .

In this case, the charge density is constant

Q(z) =
N2

N5
, 0 ≤ z ≤ N5,

and the supergravity solution may be written very explicitly in terms of ordinary functions.

This case corresponds to a triangular Young diagram, which in the LLM case gives rise to

the original superstar geometry.

We also get a simple expression for the charge distribution in the case where N2 is

large but fixed in the large N limit with N5 unrestricted. In this case, a straightforward

calculation gives

Q(z) =
N2

2

N5
e
−

N2
N5

z
.

6. Higher dimensional SU(2|4) symmetric theories

So far, we have discussed the Plane-Wave Matrix Model. However, Lin and Maldacena [1]

also identified supergravity duals to the vacua of other, higher dimensional, field theories

with SU(2|4) supersymmetry. These are the aforementioned maximally supersymmetric

Yang-Mills theory on R×S2 [4], N = 4 SYM theory on S3/Zk, and type IIA Little String
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Theory on S5 [4, 1, 6]. Aspects of the relations among these theories and the Plane-Wave

Matrix Model have been discussed in [22, 23].

In this section we will analyze these theories in the same way as we have for the

Plane-Wave Matrix Model. For the higher-dimensional theories, the construction of dual

supergravity solutions differs only in the boundary conditions for the electrostatics problem.

The individual microstates are still distinguished by the locations and charges of finite-sized

conducting disks, so the coarse-graining procedure and the entropy functional are exactly

the same as in the Plane-Wave Matrix Model.

6.1 Maximally supersymmetric Yang-Mills theory on S2 × R

6.1.1 Field theory

We will first consider maximally supersymmetric field theory on S2 × R. This theory can

be derived as a limit of the Plane-Wave Matrix Model [4], or of N = 4 SYM on S3/Zk in

the limit k → ∞ [1].

The field content of this theory is the same as the usual low-energy D2-brane gauge

theory, with an SU(N) gauge field together with fermions and seven scalar fields. Six of

the scalar fields are associated with the SO(6) R-symmetry of the theory. The remaining

one comes from the dimensional reduction when the k → ∞ limit is taken in N = 4 SYM

on S3/Zk. We will refer to this scalar as Φ. The vacua of this field theory are given by

Φ = −diag(n1, n2, . . . , nN ), and F = dA = Φ sin θdθdφ, where the ni are integers, and θ

and φ are the usual coordinates on S2.

The different vacua of the theory are labelled by the multiplicities of the integers in

the vacuum configurations of Φ and F .

6.1.2 Supergravity

The supergravity dual to this theory shares many similarities with the dual to Plane-Wave

Matrix Model. As in the Plane-Wave Matrix Model case, the disks are parallel, circular,

and centred at r = 0, z = di. In this case, however, the auxiliary electrostatics problem

has no infinite disks, and the background potential is given by

V∞ = W0(r
2 − 2z2) . (6.1)

As before, non-singular solutions will have disks with radii Ri chosen so that the charge

density vanishes at the edge of each disk.

Corresponding to a vacuum with Ni copies of the integer ni will be an electrostatics

configuration with disks at positions di = πni/2 carrying charge Qi = π2Ni/8. The gauge

theory parameters are related to the electrostatics ones as g2
YM ∝ 1/W0, and N =

∑

Ni.

In similar fashion to the Plane-Wave Matrix Model case, we can find the potential for

the system with coarse-grained charge density Q to be

V (r, z) = W0(r
2 − 2z2) +

∫ ∞

−∞

dz′
Q(z′)

√

r2 + (z − z′)2
. (6.2)
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6.1.3 Typical states

As we have described above, the vacua of this theory are labelled by a set of integers and

their multiplicities. Since the integers specifying the vacuum can be arbitrarily large (the

only restriction is that the sum of multiplicities is N), we have an infinite number of vacua

in this case. In the electrostatics picture, this corresponds to the fact that the plates are

allowed to sit anywhere on the z-axis, with the only restriction that the total charge is

N . As a result, quantities such as the charge at any location will average to zero, and we

cannot see any natural way to define a typical configuration in this case for the unrestricted

ensemble.

On the other hand, we do get a well defined thermal configuration in an ensemble

where we fix the number of NS5-branes, as in section 5. This corresponds to fixing the

separation between the highest and lowest disk. For the SU(N) theory, we should demand

also that the sum of integers times their multiplicities is zero, so we end up with a finite

set of vacuum states. For coarse-grained typical states, the total charge N will be evenly

distributed between the N5 plates, so the coarse-grained charge density will be

Q(z) =
N

N5
, −N5

2
≤ z ≤ N5

2
.

Another way to obtain a non-trivial electrostatics configuration is to recall the def-

inition of this theory as a k → ∞ limit of N = 4 SYM on S3/Zk. If we instead

take a limit in which N → ∞ and k → ∞ with N/k = ξ fixed then the result-

ing theory will have a T = 0 thermal state arising from the electrostatics potential

V (r, z) = W0(r
2 − 2z2) − (πξ)/(2) ln(r). The corresponding geometry will have a string

like singularity with entropy density

s = (1 + ξ) ln (1 + ξ) − ξ ln ξ. (6.3)

6.2 N = 4 Yang-Mills theory on S3/Zk

6.2.1 Field theory

This theory and its vacua can be obtained from N = 4 SYM on S3 in the following manner,

as outlined in [7]. We can coordinatize the S3 using the metric

ds2
S3 =

1

4
[(2dψ + cos θdφ)2 + dθ2 + sin2 θdφ2] (6.4)

where θ and φ are the usual coordinates on S2, and ψ is an angular variable with period

2π. The orbifold is obtained by identifying ψ ∼ ψ + 2π/k. The vacua of the field theory

are given by the space of flat connections, modulo gauge transformations, on S3/Zk. The

orbifold allows for vacua of the form A = −diag(n1, n2, . . . , nN )dψ, so that e2πni/k are kth

roots of unity. This ensures that A has unit holonomy around the full angular direction ψ,

which is topologically trivial. To label the vacua uniquely, we will restrict the integers ni

to be on the interval [0, k).
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6.2.2 Supergravity

In the supergravity picture, the background potential for N = 4 Yang-Mills theory on

S3/Zk is the same as in (6.1), but the electrostatics configuration is required to be periodic

in z with period πk/2. Even though the background potential is not periodic in z, the part

of the potential that determines the charge densities on the disks is. So the electrostatics

solution will have a periodic part that arises from the charged disks in addition to the

background piece.

The periodic arrays of conducting disks are, in turn, related to the vacua of the

field theory. For a vacuum that has Ni repetitions of the integer ni, the correspond-

ing electrostatics configuration will have a set of charged conducting disks at positions

z = πni/2, π(ni ± k)/2, π(ni ± 2k)/2, . . ., each carrying charge π2Ni/8. The gauge the-

ory parameters are given in terms of the electrostatics parameters by g2
YMk ∝ 1/W0 and

N =
∑

Ni.

Here the potential for the system with coarse-grained charge density Q is

V (r, z) = W0(r
2 − 2z2) +

∫ ∞

−∞

dz′
Q(z′)

√

r2 + (z − z′)2
, (6.5)

where Q has a of period πk/2.

6.2.3 Typical states

Having described the field theory vacua and the corresponding auxiliary electrostatics

configurations, we would like to consider the typical state.

To find the typical configuration in this case, we can use the partition function (5.3)

with β = 0. We can fix µ by imposing

N = k
1

eµ − 1
, (6.6)

which means

e−µ =
N

N + k
, (6.7)

and the typical vacuum will have q = N/k.

Up to an overall constant, the electrostatic potential can be found outside the charge

distribution to be V (r, z) = W0(r
2 − 2z2) − (πN)/(2k) ln(r). It is singular, and has an

entropy of

S = k

((

1 +
N

k

)

ln

(

1 +
N

k

)

− N

k
ln

(

N

k

))

. (6.8)

6.3 Type IIA little string theory on S5

6.3.1 Field theory

Type IIA Little String Theory on S5 was defined originally by its supergravity dual, found

in [1] and described below. Using this supergravity dual, it has been argued that this

theory can be defined by particular double-scaling limits of either the Plane-Wave Matrix

Model [6], the maximally supersymmetric Yang-Mills theory on S2×R or N = 4 Yang-Mills

theory on S3/Zk [7].

– 20 –



J
H
E
P
0
9
(
2
0
0
7
)
0
5
9

6.3.2 Supergravity

In this case, for the theory associated with k fivebranes we have two infinite conducting

plates separated by a distance k. As shown by Lin and Maldacena [1], we can have a

non-trivial potential

V (r, z) =
1

g0
I0

( r

k

)

sin
(z

k

)

(6.9)

between the plates for which the corresponding geometry has an infinitely long throat

carrying NS5-brane flux. The parameter g0 is related to the size of the sphere on which the

NS5-branes sit, as measured in units of α′ (the dimensionful coupling of the Little String

Theory).

We can consider adding additional charged conducting disks to this system while keep-

ing the number of units of NS5-brane flux fixed. In the electrostatics picture, this corre-

sponds to adding some number of finite charged conducting disks in the region between

the two infinite disks. The disks can sit at positions di = πni/2, where the integers ni are

in the interval [1, k), and carry finite charges Ni.

6.3.3 Typical states

As for the 2+1 dimensional case, the number of vacua here is infinite if we allow arbi-

trary configurations finite disks in between the infinite conducting plates. However, it is

interesting to consider some restricted ensembles.

First, we add some fixed number N of units of D0-brane flux. This requires that

∑

i

iNi = N .

In this case, the counting problem is identical to that is section 5.1, so we obtain the same

typical charge distribution. Of course, the supergravity solution will be different here, since

the background potential is now (6.9).

Alternatively, we could consider an ensemble of geometries in which the number of

units of D2-brane charge is fixed. In that case it is again convenient to use (5.3) with

β = 0. Fixing the asymptotic charge we find that

N2 = (N5 − 1)
1

eµ − 1
, (6.10)

which can be inverted to give

e−µ =
N2

N2 + N5 − 1
. (6.11)

The typical state will have

〈Qj〉 =
1

eµ − 1
=

N2

N5 − 1
, (6.12)

and the entropy of this configuration is, for N5 ≫ 1,

S = N5

((

1 +
N2

N5

)

ln

(

1 +
N2

N5

)

− N2

N5
ln

(

N2

N5

))

. (6.13)
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A. The Lin-Maldacena solutions

The general Lin-Maldacena SU(2|4)-symmetric supergravity ansatz (suppressing an overall

factor of α′ in the metric) is given by [1]

ds2
10 =

(

V̈ − 2V̇

−V ′′

)1/2 {

−4
V̈

V̈ − 2V̇
dt2 +

−2V ′′

V̇
(dρ2 + dη2) + 4dΩ2

5 + 2
V ′′V̇

∆
dΩ2

2

}

,

e4Φ =
4(V̈ − 2V̇ )3

−V ′′V̇ 2∆2
,

C1 = − 2V̇ ′ V̇

V̈ − 2V̇
dt , (A.1)

F4 = dC3, C3 = −4
V̇ 2V ′′

∆
dt ∧ d2Ω,

H3 = dB2 , B2 = 2

(

V̇ V̇ ′

∆
+ η

)

d2Ω ,

∆ ≡ (V̈ − 2V̇ )V ′′ − (V̇ ′)2 .

In these equations, the potential V uses slightly different conventions from the one we

discussed. The potential Vlm here is related to our potential V by

Vlm(r, z) =
π

4
V

(

2

π
r,

2

π
z

)

.

B. Coarse-graining for large disks

For certain parameter values, or in restricted ensembles, the typical states are such that

the radii of the disks are large compared to their separations. As we noted above, in this

case, the macroscopic description will replace the closely spaced disks with a solid material

that conducts only in the horizontal directions.

Such a conductor has the following properties. Since the charges are free to rearrange

themselves in the directions perpendicular to z, they will do so in such a way that the final

potential inside the conductor is a function only of z, ensuring that the electric field in

the r and θ directions is zero. There will generally be some charge distribution inside the

conductor, given by

ρ(z) = − 1

4π
V ′′(z) , (B.1)

so ρ is also a function only of z. The remaining charge will build up at the surface of the

conductor. In general, the shape R(z) for the conductor, and the linear charge distribution
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Q(z) on the conductor, together with some fixed background potential will determine the

charge density ρ(z) inside the conductor and the surface charge density σ(z), determined

from ρ(z) via

Q(z) = πR2(z)ρ(z) + 2πR(z)σ(z)
√

1 + (R′(z))2 . (B.2)

On the other hand, for some special choice of R(z), the surface charge density will vanish.

This is the coarse-grained analogue of the constraint that the charge density should vanish

at the tip of the disks.

B.1 The variational problem

We will now set up the mathematical problem that determines R(z) and ρ(z) from Q(z).

We start by assuming some fixed R(z) and Q(z).

Outside the conductor, the potential will be given by

V+(r, z) = V0(r, z) + Ṽ (r, z) ,

where Ṽ is the potential due to the charges in the conductor, which should vanish at large

r and z. Since Ṽ is an axially symmetric solution of Laplace’s equation, we can expand it

in terms of Bessel functions,

Ṽ (z) =

∫ ∞

0

du

u
A(u)e−zuJ0(ru) .

Inside the conductor, the potential will be some function V−(z). The unknown functions

A(u) and V−(z), together with the charge density ρ(z) inside the conductor and the charge

density σ(z) on the surface of the conductor will be determined by the two equations (B.1)

and (B.2), and the boundary condition

~E+(R(z), z) − ~E−(z) = 4πσ(z)n̂ . (B.3)

In our case, we wish to fix R(z) by the constraint that the surface charge density

vanishes. Then the electric field must be continuous across the boundary of the conductor,

and since the electric field is vertical inside, we must have ∂rV (R(z), z) = 0. Explicitly, we

have

∂rV0(R(z), z) −
∫ ∞

0
due−zuA(u)J1(R(z)u) = 0 . (B.4)

This determines R(z) in terms of A(u). Given this, the potential inside the conductor is

determined by the z component of the boundary condition (B.3), or simply by continuity

of the potential across the boundary, so

V−(z) = V0(R(z), z) +

∫ ∞

0

du

u
A(u)e−zuJ0(R(z)u) .

Finally, we can use (B.1) and (B.2) to write an equation relating A(u) and Q(z),

Q(z) = −1

4
R2(z)(∂2

z V0(z) +

∫ ∞

0
duuA(u)e−zuJ0(R(z)u)) . (B.5)
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To summarize, A(u) is determined by the integral equation (B.5) where R(z) is deter-

mined in terms of A via (B.4).

In practice, it is far simpler to determine R(z) and Q(z) given some A(u), or more

generally some solution to the Laplace equation that arises from any set of axially sym-

metric localized charges. We could also parametrize our solution to the Laplace equation

via the multipole data rather than the function A(u). As an example of this approach,

we can come up with an explicit coarse-grained supergravity solution starting with the

simplest non-trivial solution Ṽ , namely the potential from a dipole localized at the origin

(the infinite conducting plane at z = 0 forces the potential to be an odd function of z.). In

this case, we have

Ṽ (r, z) = p
z

(r2 + z2)
3
2

.

The radial electric field for the full potential is then

Er(r, z) = −∂rV+(r, z) = −2V0rz + 3p
rz

(r2 + z2)
5
2

.

Requiring that this is zero gives r = 0 or z = 0 or

z2 + r2 = x2 ,

where we define

x =

(

3p

2V0

)
1
5

.

Thus, in this case, the profile of the conductor is spherical. From (B.5), we can now

determine the corresponding charge density Q(z). We find

Q(z) =
5

2
V0z(x2 − z2) .

As a check, we find that the total dipole moment for this configuration is

∫ ∞

0
dz2zQ(z) = p .

So we have at least one example where we know both the geometry and the Young

diagram explicitly. Note that for this case, the typical height for the plates and the typical

size are the same, of order x. In terms of the field theory parameters, we have V0 ∼ 1/g2

and p = 2N , so x ∼ λ
1
5 . Thus, our coarse-grained description should be valid as long

as λ is large. The typical charge on one of the plates in the corresponding microstate

geometries is Q ∼ V0x
3 ∼ N/λ

2
5 . In section 3, we saw that this charge is of order one

for typical distributions, so it is only for λ ∼ N
5
2 that the geometry we have constructed

has an entropy of the same order of magnitude as the thermal state. (It is important to

note that for a fixed configuration of disks (i.e. fixed p/V0 ∼ λ), the corresponding charge

distribution changes as a function of N .)
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C. Stretched horizons

In this appendix we investigate the possibility that the area (or some generalization of

area) of a suitably defined stretched horizon might reproduce the entropy formula (4.1).13

We focus on a particularly simple specific example of a coarse-grained geometry, and find

that a stretched horizon whose area would reproduce the entropy would necessarily be

parametrically closer to the singularity than both the scale xs where the string coupling

becomes of order one, and the scale xc where the curvature becomes string scale.

The geometry we focus on is the thermal state geometry of the super Yang Mills theory

on S3/Zk. In this case the potential is simply

−Nπ

2k
log ρ + V0(ρ

2 − 2η2) (C.1)

where V0 ∼ 1
g2
ymk

as identified in [7]. The potential is singular at ρ = 0, which violates the

regularity condition on the LM geometry. The boundary of the coarse-grained conducting

disks is at ρ = r0

√

πN
4kV0

, and the supergravity solution is

ds2
10 =

(

N

4V0kπ

)1/2 {

−4
(4V0kρ2)

Nπ
dt2 +

8V0

(2V0ρ2 − Nπ/2k)
(dρ2 + dη2) + 4dΩ2

5

+ 2
k(2V0ρ

2 − Nπ/2k)

Nπ
dΩ2

2

}

e4Φ =
(Nπ/k)

16V 3
0 (2V0ρ2 − Nπ/2k)2

,

C3 = −4
k(2V0ρ

2 − Nπ/2k)2

πN
dt ∧ d2Ω ,

B2 = 2ηd2Ω (C.2)

We see explicitly that the geometry is singular at ρ = r0 ∼
√

g2N , which is exactly the edge

of the disks, but there is no horizon in this geometry. This solution has been considered

in [8], where it was pointed out that the singularity is related to the Zk orbifold singularity

in the IIB language. We will assume the stretched horizon to be a constant ρ surface

respecting the translational symmetry along the η direction. Using ρ = r0 + x, we find the

string coupling becomes of order one at

xs =
1

8
√

πV 2
0

∼ (g2
ymk)2. (C.3)

The Ricci scalar can be calculated noticing the fibred structure of the metric,

Rstring = 3

√

V0k

Nπ

8V0kρ2 − Nπ

4V0kρ2 − Nπ
. (C.4)

13Recently, these ideas have been explored in the context of coarse-grained LLM microstates [12], though

a prescription for defining a stretched horizon that generally reproduces the entropy of coarse-grained states

has not emerged.
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We see that it diverges at exactly the boundary of the coarse-grained conducting disks.

The curvature becomes of string scale at

xc ∼ 1 . (C.5)

In the above we have assumed g2
ymN ≫ 1 in order for the supergravity approximation to

be valid. As a result, we will be interested in the scale where g2
ymN ≫ 1 ≫ g2

ymk, and in

particular N/k ≫ 1. The area of an 8-surface at constant t and ρ = R(η) can be calculated

to be (in the Einstein frame)

A = 211/2ω2ω5

√

1 + R′2(z)

√

(V̈ − 2V̇ )V̇ 3/2, (C.6)

where ω2, ω5 are the volume elements of the two-sphere and five-sphere respectively. Spe-

cializing to R(z) = r0 + x and to the metric (C.2), we get

A = 16ω2ω5

√
Nπ

(4V0kρ2 − Nπ)3/2

k2
. (C.7)

We note that it is a monotonically increasing function with the distance from r0. Using

this and evaluating at xc, xs we find

Ac ∼ N5/4

g
3/2
ym k2

,

As ∼ (g2
ymk)3Ac . (C.8)

The Bekenstein-Hawking entropy formula S = A
GN

gives (GN = g2
s = (g2

ymk)2)

Sc ∼ 1

g
11/2
ym k11/4

(

N

k

)5/4

,

Ss = (g2
ymk)3Sc. (C.9)

As expected Sc ≫ Ss. According to the entropy functional (4.1), the entropy associated

with the geometry (C.2) is

S = −k ln(N/k) + (N + k) ln(N/k + 1). (C.10)

In the large N/k limit it becomes

S ∼ k(ln(N/k) + 1), (C.11)

which is much smaller than both Ss, Sc. Here, both α′ and string loop corrections are very

important. Further, if a horizon (or some stringy analogue) does exist in the fully corrected

solution, we may require a highly stringy generalization of area to compare with the entropy.

While we have studied only one particular example, we expect that the qualitative features

will apply in the general case.
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